
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. , NO. , MAY 2025 1

DiViCo: Disentangled Visual Token Compression
for Efficient Large Vision-Language Model

Xin Wang, Member, IEEE, Zirui Pan, Hong Chen, and Wenwu Zhu, Fellow, IEEE

Abstract—Large Vision-Language Models have drawn much
attention and become increasingly applicable in complicated mul-
timodal tasks such as visual question answering, video grounding,
etc. However, it still suffers from inefficiency problem during the
inference stage due to the computational overhead brought by
the large number of visual tokens. Existing works either utilize
an attention score (or visual-text relevance) to filter out the less
significant visual tokens, or insert learnable projection layers
to directly compress the tokens, which neglects the informative
details in visual signals and introduces information loss, resulting
in poor generalizability to test data. To solve these problems,
in this paper we propose a novel Disentangled Visual Token
Compression module, i.e., DiViCo, that effectively compresses the
visual tokens and maintains good performance simultaneously.
In concrete, we first select the top τ% visual tokens according
to their average attention scores, then predict the gap between
these selected tokens and the original information by employing
the chosen tokens in a disentangled and variational manner.
Specifically, we model the mean and variance, sampling the
predicted gap from the Gaussian prior. We further keep the
informativeness of the compressed visual tokens via KL diver-
gence, which ensures the generalizability of the model. Extensive
experiments demonstrate the advantage of our proposed DiViCo
module against several state-of-the-art baselines over various
real-world datasets. Most notably, LLaVA-v1.5-7b equipped with
DiViCo is able to reduce 67.7% FLOPs and save 51.7% time while
maintaining 95.6% of the accuracy for LLaVA-v1.5-7b without
any compression.

Index Terms—Multimodal Representation, Large Vision-
Language Model, Token Compression

I. INTRODUCTION

BUilding on the Large Language Model (LLM) [1], [2],
[3], [4], [5], Large Vision-Language Model (LVLM) [6],

[7], [8], [9], [10], [11], [12] has achieved revolutionary
progress via aligning visual and text modalities to leverage
the powerful textual understanding abilities of LLMs. Existing
works mainly employ sequential visual representations [12],
[10], where visual signals such as images or videos are first
divided into patches and then encoded in a series of tokens,
which will be projected to the text domain. By resorting to
techniques such as visual instruction tuning [11], LVLMs are
able to finish complicated multimodal tasks, including image
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Q: What is the brand?
A: Dakota Digital

(a) Input Image

(b) Layer 0 (c) Layer 2

(d) Layer 15 (e) Layer 25

Fig. 1. Average attention scores of the visual tokens at layer K of the decoder,
where K ∈ {0, 2, 15, 25}. Deeper colors indicate higher scores.

captioning, visual question answering and video grounding,
etc.

However, the number of visual tokens far exceeds that of
text tokens, especially for high-resolution images and videos,
resulting in high computational overhead due to the quadratic
complexity of the attention mechanism [13]. Moreover, vi-
sual tokens also receive lower attention scores than their
textual counterparts, contributing less than the textual tokens
in LVLMs [14]. As such, we discover that existing LVLMs
handle the visual signals inefficiently because LLMs do not
process the visual signals as a whole, instead they only focus
on certain sub-areas whose tokens will be aggregated together
in the decoder layers and further be processed to a higher
level of abstraction that can be comprehended by the LLMs.
As shown in Figure 1, after the initial layers of the decoder
(specifically, layer 2), the LLM starts to focus on certain
visual subareas, thus most of the visual tokens contribute
little to LLM understanding while significantly slow down the
inference process.

Existing works either i) follow a training-free paradigm that
relies on attention scores or image-text relevance to adaptively
select the most significant tokens [14], [15], [16], [17], or ii)
adopt a tuning-based strategy that directly compresses visual
tokens through pooling or learnable networks [18], [19], [17],
[20], [21], equivalent to adding another abstraction level. On
the one hand, training-free paradigm considers tokens with
high attention score or relevance beneficial, discarding the rest
tokens with small values, which fails to make full use of the
discarded tokens. As a result, the details in the visual signals
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are neglected, deteriorating their performance for fine-grained
visual understanding tasks. On the other hand, tuning-based
strategy increases training overhead, and further introduces
information loss that reduces the generalization ability since
similar visual signals (e.g., images and videos etc.) may
become completely indistinguishable after compression.

To tackle the above issues, we propose to accelerate infer-
ence speed for LVLMs by adaptively compressing the visual
tokens, which poses the following challenges.

1) Compression will inevitably bring information loss, and
it is always difficult to achieve fast inference speed
without performance drop.

2) Compressing visual tokens may result in low general-
izability, since different visual signals may be shrunk
into similar tokens, making it difficult to maintain good
performances on new or unseen real-world datasets.

To address the challenges, we propose Disentangled Visual
Token Compression for Efficient Visual-Language Model,
dubbed DiViCo. To the best of our knowledge, DiViCo is
the first attempt to explore the potential of disentangled
encoding of visual signals in LVLMs. DiViCo performs token
compressions in the Kth decoder layer of the LLM model.
Firstly, we reuse the self-attention matrix of tokens from the
K-1th layer without bringing additional computational cost.
We then rank the visual tokens according to their average
attention scores and select the top τ% tokens as the most
significant. We note that these selected tokens are only part of
the visual signals. Moreover, we utilize the remaining (1−τ%)
tokens via employing a shallow neural network to predict the
information gap between using only the selected tokens and
using all the tokens including these remaining tokens in a
disentangled and variational manner. Specifically, we sample
the information gap from a Gaussian distribution and predict
the corresponding mean and variance. We further adopt the
Kullback-Leibler (KL) Divergence [22] loss to guarantee the
disentanglement within the information gap, ensuring its infor-
mativeness. We incorporate the predicted information gap into
the τ% selected visual tokens to derive the final compressed
visual tokens, obtaining a compression rate of 1 − τ%. In
this way, we are able to significantly reduce the number of
visual tokens without losing valuable information and details,
as well as increase the generalizability of the LVLM via the
disentanglement design. The contributions of this work can be
summarized as follows.

• We propose a novel Disentangled Visual Token Compres-
sion module, i.e., DiViCo, to effectively compress the
visual tokens and maintain good performance simulta-
neously. To the best of our knowledge, this is the first
attempt to explore the potential of disentangled encoding
for visual signals in LVLMs towards inference speed
acceleration. Moreover, our DiViCo module can be easily
plugged into most existing LVLMs.

• We adaptively select the τ% most important visual tokens
and compress the remaining tokens in a disentangled
and variational way. Compared to existing state-of-the-
art methods, the proposed DiViCo module is able to
significantly reduce the inference cost for LVLMs with

little performance drop.
• We conduct extensive experiments to show the superiority

of our proposed DiViCo module against several state-
of-the-art baseline models by validating its significant
improvement over a wide range of benchmarks with many
backbones.

II. RELATED WORK

In this section, we review related works on Large Vision-
Language Model, variational encoders and visual compression
for LVLM, respectively.

A. Large Vision-Language Model

Large Vision-Language Models (LVLM) [18], [11], [10],
[23], [6] have emerged as a cornerstone in multimodal artifi-
cial intelligence, enabling systems to process and understand
both visual and textual information seamlessly. Pioneering
architectures such as CLIP [24] have demonstrated the power
of joint training on large-scale image-text datasets to create
models capable of performing zero-shot tasks across various
domains. These models leverage vision encoders [25] and
text encoders to align visual and textual representations in a
shared embedding space. Their scalability and generalization
capabilities have established LVLMs as foundational technolo-
gies in applications ranging from image retrieval to caption
generation.

Building on these foundations, subsequent works such as
Flamingo [6], BLIP2 [23], and Qwen-VL [10] have incor-
porated cross-modal attention mechanisms to enhance inter-
actions between modalities. These models are designed to
process both image and text inputs simultaneously, allowing
for improved performance on complex reasoning tasks such
as Visual Question Answering (VQA) and multimodal dialog
systems. The introduction of fine-tuning paradigms such as
adapter-based methods, Prompt Learning [26], and Low-Rank
Adaptation (LoRA) [27] has further improved the adaptability
of LVLMs to downstream tasks with minimal computational
overhead.

Despite these advancements, one of the critical challenges
faced by LVLMs is their computation and memory ineffi-
ciency, especially when handling long visual tokens. Mod-
els such as Flamingo or LLaVA [11] employ dense cross-
attention between image and text tokens, leading to quadratic
complexity with respect to token counts. This limitation has
motivated researchers to dive into token reduction strategies,
such as visual token pooling, clustering, or employing learned
compression modules, to decrease the token length without
sacrificing critical information.

B. Variational Encoder

Variational encoders, or Variational Autoencoders (VAEs)
[28], [29], have gained prominence as powerful tools for
learning latent representations of data in an unsupervised or
semi-supervised manner. VAEs integrate probabilistic reason-
ing with deep learning by modeling the latent space as a
distribution rather than a fixed point. This approach enables the
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generation of diverse and realistic samples, as well as robust
representation learning for tasks such as reconstruction [30],
[31], anomaly detection [32], and disentanglement [33], [34],
[35], [36].

In the context of vision-language models, variational en-
coders have shown potential in addressing the complexity of
high-dimensional data. By learning compact and structured la-
tent representations of visual or textual information, variational
encoders can significantly reduce token length while preserv-
ing essential features. For instance, recent works employ VAEs
to encode visual features into a latent space [37], [38], [39],
[40], [41], followed by reconstruction modules to ensure that
the compressed representation retains sufficient fidelity for
downstream tasks. This has paved the way for integrating
VAEs into token compression pipelines in multimodal systems.

One of the critical strengths of variational encoders lies
in their flexibility to incorporate domain-specific priors [42],
[43]. Such conditioning mechanisms improve the informative-
ness of the latent variables, enabling more efficient compres-
sion and better generalization.

C. Visual Compression for Vision-Language Model

Visual compression has been first investigated for Vision-
Language Models (VLMs), specifically for its vision trans-
formers [44], [45], [46]. As in the era of large models, visual
compression has become increasingly significant, since current
high resolution images or videos will consume even larger
memory space. Recently, visual compression, i.e., token reduc-
tion, for LVLMs can be categorized into two branches, namely
training-free and tuning-based. For the former, FastV [14]
ranks the visual tokens based on their attention scores from
previous layers. Afterwards tokens with lower attention scores
are discarded in the following decoder layers. ToMe [15]
prunes the tokens based on the relevance between visual tokens
and text and merges both modalities through the Bipartite
Soft Matching algorithm [15]. These are the two pioneering
works for token reduction. More recently, SparseVLM [16]
makes use of the guidance from text tokens, and prune the
visual tokens according to the relevance across decoder layers
adaptively. Although it adopts a token recycling strategy to
retrieve tokens from the deleting pool, tokens with less rele-
vance still tend to be discarded with no doubt. For the latter,
Deco [19] utilizes an average pooling layer to downsample the
input visual signal at the patch level, and retrains the linear
projector that adapts the compressed information to the LLM.
LLaVA-Prumerge [17] samples the important visual tokens
based on their relevance with the class tokens, which are then
clustered via k-nearest neighbor around certain centers to get
a compressed representation. Llama-vid [18] compresses the
visual signals using average pooling and linear projectors. It
further aggregates the compressed information with guidance
from the text domain. We can see that the compression strate-
gies they adopt may introduce much irreversible information
loss, with many visual tokens directly discarded or indirectly
compressed. Moreover, different visual signals, e.g., images
or videos, can be indistinguishable under these compression
strategies, since they are basically a projection from a high-

dimensional space to a low-dimensional one, thus reducing the
generalizability of the LVLM.

III. THE PROPOSED DIVICO MODULE

In this section, we first introduce some preliminaries, i.e.,
attention mechanism, KL divergence and basic knowledge
on LVLM, then describe the specific implementation details
of the proposed DiViCo module, including adaptive token
selection and disentangled compression. We further provide
the complete training procedure and the theoretical complexity
analysis. The overall framework of DiViCo as well as its
incorporation into LVLM are demonstrated in Figure 2.

A. Prelinminary

a) Attention Mechanism in LVLMs: The transformer
layer in a typical LVLM adopts the casual self-attention
design [48]. For the single-head implementation, an attention
matrix A = Q×KT ∈ RN×N is computed using Q ∈ RN×d,
i.e., Query, and K ∈ RN×d, i.e., Key, where N and d repre-
sents the number and the dimension of all tokens, respectively.
Afterwards the Value matrix V ∈ RN×d will be aggregated
using the corresponding weights in A, formally,

Attention(Q,K,V) = softmax
(
QKT

√
d

)
V. (1)

For self-attention, it takes the same embedding E as an input,
then converts it to three matrices through linear projections
and feeds them into an attention layer as follows,

Self-Attention(E) = Attention(EWQ,EWK ,EWV ), (2)

where the projection matrices WQ, WK and WV ∈ Rd×d

can make the attention mechanism more flexible. In DiViCo,
we utilize the existing self-attention matrix to discover the
most significant visual tokens, i.e., which receives the highest
average attention scores.

b) KL Divergence Loss: The KL Divergence Loss [49],
[50] is a measure in statistics that quantifies in bits the degree
of closeness between a probability distribution p = {p(zi)}
and a model distribution q = {q(zi)}, formally,

DKL(q||p) =
∑
i

p(zi) log
q(zi)

p(zi)
. (3)

DKL is non-negative, and DKL = 0 if and only if the two dis-
tributions are exactly identical. KL divergence loss is widely-
used in variational autoencoders (VAEs). Particularly, if we
choose a prior p that satisfies p(z) =

∏
i p(zi), penalizing the

KL divergence will encourage the disentanglement across the
dimensions (i.e., zi) in z.

c) Large Vision-Language Model (LVLM): Large Vision-
Language Models arise in recent years, and have achieved
great success in complicated multimodal tasks. Current ap-
proaches usually adopt a Pre-training, Fine-tuning, Predicting
paradigm [51], where an LVLM is pre-trained with large-scale
image-text or video-text pairs, and further fine-tuned to learn
the relevance between the visual signals and text with respect
to specific tasks such as visual question answering. For a
typical LVLM, the visual signal and text will be encoded into
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(a) Training Process of a typical LVLM (LLaVA v1.5) with DiViCo
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Fig. 2. The overall framework of an LVLM with the proposed DiViCo module. Subfigure (a) shows the training process of a typical LVLM, i.e., LLaVA-
1.5 [11]. Typically, the images and texts are encoded separately before being concatenated and fed into the LLM, which usually adopts the decoder-only
architecture [47]. Our proposed DiViCo Module is inserted between the (K − 1)th and Kth layer of the decoder. Subfigure (b) demonstrates the detailed
architecture of DiViCo. In concrete, we first perform adaptive token selection, where we retrieve the input visual tokens from layer K, and sample the top
τ% according to its average attention score. Next for the rest of the tokens, we employ a shallow neural network, i.e., variational encoder, to predict the
information gap, i.e., performance differences between using only the selected tokens and using the whole original visual signals. Instead of directly predicting
the information gap, we sample its value from a Gaussian distribution. In inference stage, the mean, i.e., µ, is adopted as the predicted result. We further
introduce a KL divergence loss to keep the compressed information disentangled in the latent space. Then we perform the reconstruction with the information
gap being incorporate into the selected visual tokens, which completes the procedure. These compressed visual tokens are utilized as the input to the following
decoder layers, thus greatly relieving the computational burden during the inference process.

a set of tokens vI and vT respectively and be concatenated
together to feed into the corresponding LLM, which usually
employs a decoder-only architecture. The DiViCo module
will be plugged in the decoder to relieve the computational
overhead caused by the large number of visual tokens.

B. Adaptive Token Selection

We regard the degree of attention that a token is able to
contribute (we may also call it contributed attention) within
the self-attention mechanism of an LLM as the significance
of this token. As such, higher contributed attention indicates
more importance of the corresponding token in affecting
the afterwards forward process. More specifically, we select
the last token and compute the average attention weights it
receives from any other visual token across all heads. However,
as is shown in Figure 1, the average contributed attention
of a token may shift from a scattered distribution to a more
centralized one as the decoder layer goes deeper and deeper.

Thus we can conclude that the LLMs gradually focus more
on some anchor visual tokens, which inspires us to loose the
grip on the rest of the visual tokens to boost efficiency.

Concretely, suppose all the tokens are denoted as a set
v = {vS , vI , vT }, where vS ∈ RNs×d, vI ∈ RNi×d and
vT ∈ RNt×d denote the set for system tokens, visual tokens
and text tokens, and d represents the hidden size, while
Ns, Ni and Nt are the corresponding number of tokens,
respectively. We then make use of the existing self-attention
matrix A ∈ RH×N×N = (ah,i,j)1≤i,j≤N,1≤h≤H that the
LLM will compute in Layer K-1, so as not to bring any
unnecessary computational cost, where N = Ns + Ni + Nt

represents the total number of tokens, and H stands for the
number of heads in Multi-Head Attention. Then we compute
the average attention score st for each visual token v

(t)
i ∈ vi

as follows,

st =
1

H

H∑
h=1

ah,−1,t, (4)
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where ah,−1,t represents the attention score between the tth

visual token and the last token within the hth head in Multi-
Head Attention. We then select the visual tokens with the
top τ% average attention score as vs ∈ RN

′
i×d, i.e., vs =

{v(t)I |v
(t)
I ∈ vI , st ranks in top τ%}, where N

′

i = Ni × τ%.
We note that the rest of the visual tokens with less average
attention score, denoted as vr ∈ R(Ni−N

′
i )×d, will not be

directly discarded. Given that vr generally contains much less
information, we perform an average pooling to obtain vp ∈ Rd

where vp = AveragePooling(vr), which is able to condense the
information for the sake of efficiency.

C. Disentangled Compression
In section III-B, we derive the most significant visual tokens

denoted as vs, while the rest ones are denoted as vr. We note
that although vs has incorporated most of the information,
there still exists an information gap between vs and the original
visual signal. Ignorance of this gap may result in loss on some
detailed information, thus deteriorating the model’s capability
of fine-grained understanding. Therefore, we propose to use
disentangled encoding to predict the information gap based
on the less significant tokens, i.e., vr.

Specifically, for any chosen v
(t)
s ∈ vs, we first concatenate

it with vp to derive a new token v
(t)′

s ∈ R2d with dimen-
sion doubled from d to 2d. We utilize a variational encoder
gθ(.) : R2d → (Rd,Rd) which is a shallow neural network
to model the posterior distribution q(v

(t)′

c |v(t)
′

s ) after com-
pression, where v

(t)′

c represents the compressed information
gap corresponding to v

(t)′

s , and θ stands for the learnable
parameters. Finally we add v

(t)′

c back to v
(t)
s to derive the

final compressed visual token v
(t)
c = v

(t)′

c + v
(t)
s .

We assume that q(v
(t)′

c |v(t)
′

s ) follows an nC-dimensional
multivariate Gaussian distribution. Thus we predict its mean µ

and variance σ2 using gθ(.), and sample v
(t)′

c from the Gaus-
sian distribution. We use a simple re-parameterization [28]
trick, introducing a random variable ϵ ∼ N (0, 1) to ensure
the gradient will be back-propagated smoothly during train-
ing, since the modeled multivariate Gaussian distribution is
intractable. During the inference stage, we use the predicted
mean as v

(t)′

c . We note that modeling a distribution instead
of a single value will enhance the robustness of the model,
increasing its generalizability for unseen data. We argue that
when the input visual signals, i.e., image or video, are dis-
turbed by noise, our proposed model will still perform well
(See Figure 5 and Table II). Since we concatenate v

(t)
s and vp

as the input, as well as capture the information gap between
v
(t)
s and the original visual signal, v(t)

′

c is expected to contain
the information in vp that is most relevant to v

(t)
s . Formally,

the overall process can be summarized as follows,

µ, σ ← gθ(v
(t)′

s ), (5)

q(v(t)
′

c |v(t)
′

s ) ∼N (µ(1), µ(2), · · · , µ(d), σ(1), σ(2), · · · , σ(d)),
(6)

v(t)
′

c ← µ+ ϵ · σ, (7)

where µ = [µ(1) · · ·µ(d)] and σ = [σ(1) · · ·σ(d)] ∈ Rd.
We further propose a KL divergence loss to ensure the

disentanglement of the compressed visual token, improving
its informativeness,

DKL = DKL

(
q(v(t)

′

c |v(t)
′

s ) || p(v(t)
′

c )
)
, (8)

where p(v
(t)′

c ) is a prior distribution that satisfies p(v
(t)′

c ) =∏d
j=1 p(v

(t)′

c,j ), which is mutually independent across all di-
mensions. Therefore, via optimizing DKL, we are able to
minimize its distance to the independent distribution p(v

(t)′

c ),
enhancing the disentanglement within the dimensions of v(t)

′

c ,
and then forcing the compressed visual token to contain as
much information as possible. On the other hand, the original
training objective of LVLM will learn to reconstruct the
ground-truth text tokens, which is consistent with our goal
to reconstruct the original visual signal from our compressed
ones. Therefore, by adding DKL to the original loss, we can
ensure the compressed visual tokens disentangled in latent
space and reconstructable with respect to the original visual
signal simultaneously. In practice, we design gθ(.) as a double-
layer Multi-Layer Perceptron (MLP), and set p(v

(t)′

c ) as an
n-dimensional independent standard Gaussian distribution.

D. Implementation
a) Training Stage: We equip the LVLM with the DiViCo

module, and further fine-tune the module via utilization of ex-
isting pre-trained LVLM weights. We remark that the DiViCo
module is fine-tuned together with foundation LLM model as
a whole instead of being trained separately. Otherwise, the
LLM may not be able to understand the compression strategy
proposed in DiViCo, thus failing to uncover useful information
from the newly compressed visual tokens.

Specifically, for LLaVA-v1.5, we adopt the visual instruc-
tion tuning [11] technique, fine-tuning DiViCo module and the
Vicuna LLM at the same time. We add LoRA layers to the
decoder layer of LLM, and fine-tune these LoRA layers while
keeping the weights of the original layers fixed. Furthermore,
we add a hyper-parameter β to control the weights of the KL
divergence loss DKL as follows,

loss← lossLLM + β · DKL. (9)

The detailed training procedure can be found in Algorithm 1.
b) Inference Stage: During inference, we use the mode

(mean) of q(v
(t)′

c |v(t)
′

s ) as the predicted information gap be-
tween the selected significant visual tokens and the original
visual signal. We control the compression rate by adjusting
the hyper-parameter τ% ∈ (0, 1). Larger τ indicates smaller
compression rate, leading the model to achieve a relatively
higher accuracy at the cost of lower efficiency, while smaller
τ indicates larger compression rate, resulting in faster infer-
ence speed. The overall inference pipeline is illustrated in
Figure 3, where the model is instructed to describe the main
content of a given visual image. We demonstrate the responses
from LLaVA-v1.5-13B equipped with DiViCo module with
different compression rates (i.e., τ% ∈ {1, 0.16, 0.11}). From
the results we can observe that LLaVA-v1.5-13B equipped
with DiViCo performs fairly well at large compression rates,
generating nearly identical answers compared to the non-
compressed version which has a much slower inference speed.
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The image features a small, fluffy gray kitten playing with a green ball on 
a hardwood floor. The kitten is standing on its hind legs and appears to 
be pouncing on the ball, displaying its playful nature. In the background, 
there are several books scattered around. 

The image features a small grey and white kitten playing with a green 
ball on a carpeted floor. The kitten is standing on its hind legs and 
appears to be enjoying the interaction with the ball. The ball is located 
towards the right side of the scene, with the kitten positioned to the 
left of it. 
The image features a small kitten playing with a green ball on a 
carpeted floor. The kitten is in the middle of the scene, with the ball 
positioned towards the right side of the image. The playful kitten is 
actively engaging with the ball, possibly batting or chasing it around. 

Almost Identical but Faster !

Fig. 3. The inference pipeline for LLaVA-v1.5-13B equipped with the proposed DiViCo module. Here, the user will input the visual signal, i.e. image, and
the instruction to the LVLM. For original LLaVA, the image will be encoded into Ni = 576 tokens. With DiViCo, if we modify the hyper-parameter τ% to
0.16% and 0.11%, the number of image tokens will be reduced to 96 and 64, respectively. The responses of the two that load DiViCo module with different
hyper-parameter τ are demonstrated in green and yellow boxes, where the similar parts across all three boxes are marked with underline of the same color.
From the results we can see that the responses outputted by LLaVA equipped with DiViCo are almost identical to the one outputted by the original LLaVA,
while the former achieves a much faster speed.

Algorithm 1 Training procedure of DiViCo.
1: Input: K, τ , β, Data = {(image,text)}ND

2: Parameter: θ = {parameters for DiViCo, parameters for
LLM in terms of LoRA}

3: function DISENTANGLEDENCODING(v
′

s)
4: µ, σ ← gθ(v

′

s).
5: ϵ ∼ N (d)(0, 1)
6: v

′

c ← µ+ ϵσ
7: return v

′

c.
8: end function

BEGIN MAIN FUNCTION:
9: Initialize H , N , d as number of heads in multi-head

attention, number of tokens and dimension of tokens,
respectively.

10: repeat
11: Forward a batch of data {(image,text)}Nbatch

.
12: Select the input visual tokens vI for layer K of the

LLM decoder. Initialize Ni as the number of visual tokens.
13: Make use of the existing self-attention matrix A ∈

RH×N×N = (ah,i,j)1≤i,j≤N,1≤h≤H .
14: for t← 0 to Ni do
15: Compute st ← 1

H

∑
h ah,−1,t

16: end for
17: vs ← {v(t)I | v

(t)
I ∈ vI , st ranks in top τ%}

18: vr ← vI \ vs
19: vp ←AVERAGEPOOLING(vr).
20: v

′

s ←CONCATENATE(vs, vp).
21: v

′

c ←DISENTANGLEDENCODING(v
′

s).
22: vc ← vs + v

′

c.
23: Update the input visual tokens for layer K of the

LVLM decoder as vc.
24: Compute loss = lossLLM + βDKL.
25: Update θ.
26: until Converged

E. Complexity Analysis
In this section, we theoretically analyze the complexity of

DiViCo module as well as the efficiency gains of LVLMs
when equipped with DiViCo in terms of FLOPs (floating-point
operations per second). For a typical Transformer layer [48],
we consider that its computational overhead mainly comes
from the operation performed in the Multi-head Attention layer
(MHA) and the Feed-forward Network (FFN). Suppose the
dimension of the intermediate layer of FFN is m, we can
calculate the FLOPs for a single Transformer layer as follows,

4Nid
2 + 2N2

i d+ 2Nidm. (10)

When equipped with DiViCo module, which is inserted before
the Kth layer of the decoder, the number of visual tokens
will be reduced from Ni to N

′

i , which equals to Ni × τ%
(same proportions for the corresponding FLOPs). We aslo note
that DiViCo module introduces some additional computational
overhead, which is brought by the Disentangled Compression.
Theoretically, the overall FLOPs reduced by DiViCo module
can be calculated as follows,

∆FLOPs = (L−K)(4N̄id
2+

1 + τ%

1− τ%
·2N̄2

i d+2N̄idm)−4N
′

id
2,

(11)
where L represents the total number of Transformer layers in
LLM, and N̄i = Ni − N

′

i = (1 − τ%)Ni. In practice, we
select (K, τ) far less than (L, 1), typically around (2, 11.1%)
respectively, and the calculated ∆FLOPs can be approximated
as follows,

∆FLOPs
K≪L,τ≪1−−−−−−−→ L · (4N̄id

2 + 2N̄2
i d+ 2N̄idm). (12)

Thus, the theoretical reduction ratio for FLOPs when equipped
with DiViCo module can be approximated via the following
equations,

4N̄id
2 + 2N̄2

i d+ 2N̄idm

4Nid2 + 2N2
i d+ 2Nidm

(13)
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=(1− τ%) · 2d+m+ N̄i

2d+m+Ni
(14)

≈(1− τ%) (∵ Ni ≪ 2d+m), (15)

which approximately equals to 1 − τ%. Thus, we can safely
use 1− τ% to represent the overall compression rate.

IV. EXPERIMENT

In this section, we empirically evaluate the performance of
our proposed DiViCo module through quantitative experiments
on real-world datasets against several state-of-the-art baselines.
We also conduct a series of ablation studies, in which we test
the efficacy of some core components in DiViCo, and study
the effect of the hyper-parameter K on model performance.
In addition, we provide some visualization experiments and
efficiency analysis to further validate the effectiveness of our
DiViCo module.

A. Experimental Setup

a) Datasets and Baselines: We conduct extensive quan-
titative experiments on several real-worlds datasets:

• TextVQA [52]: The TextVQA benchmark evaluates the
model’s reasoning abilities through challenging visual-
answering tasks with rich textual information. It contains
45,336 questions on 28,408 images that require reasoning
over texts to obtain the correct answer.

• Pope [53]: The Pope benchmark uses three sampling
strategies to evaluate the degree of hallucinations in
models via requiring it to answer a series of binary
questions regarding the presence of objects in an image.
Metrics such as recall, precision and F1, etc., will be
calculated under each sampling strategy. In this work,
we adopt the average F1 metric as the final score.

• MMBench [54]: The MMBench benchmark evaluates the
performance of models comprehensively across various
and hierarchical dimensions, with the top level including
Perception and Recognition, and the bottom level con-
taining 20 specific ability dimensions.

• MME [55]: The MME benchmark also evaluates both the
Perception and Recognition abilities of models compre-
hensively across many dimensions. It consists of 14 sub-
tasks, each is carefully designed with concise instruction-
answer pairs, thus effectively avoiding data leakage and
enabling fair comparisons of LVLMs.

• VQAv2 [56]: The VQAv2 benchmark evaluates the visual
perceptron abilities through open-ended questions. It con-
sists of over 260,000 images, covering large quantities of
real-world objects. Ten ground-truth answers are provided
by human annotators for each question.

• Vizwiz [57]: The Vizwiz benchmark consists of over
31, 000 visual questions originating from a group of
visually impaired people each of whom takes a picture
using a mobile phone and records a spoken question about
it, together with 10 crowdsourced answers per visual
question.

• GQA [58]: The GQA benchmark consists of three parts,
i.e., scene graphs, questions and images, evaluating the

models’ abilities to understand visual scenes. It develops
a powerful and robust question engine that leverages the
Visual Genome scene graph structures to create 22M
diverse reasoning questions.

• TGIF [59]: The TGIF benchmark extends the image
question-answering task to the video domain, consisting
of over 160,000 video-question pairs, evaluating the mod-
els’ abilities to comprehend details of the given videos.

• MSVD [60]: The MSVD benchmark is based on the ex-
isting Microsoft search Video Description dataset, which
contains nearly 2,000 videos clips and corresponding
question-answer pairs. Due to its large data size and
question diversity, it is widely used in video question
answering tasks. In addition, the questions are mainly
formulated in five types, i.e., What, Who, How, When
and Where.

• MSRVTT [60]: The MSRVTT benchmark proposes com-
plicated understanding tasks, where models are required
to effectively comprehend and reason over the videos in
terms of both spatial and temporal information. Similar
to MSVD, the questions in MSRVTT are also formulated
in the five types.

We compare our methods with two most recent and pow-
erful baselines, FastV [14] and DeCo [19], which are the
representative works of two paradigms, i.e., training-free and
tuning-based, respectively. Specifically, FastV ranks the visual
tokens according to the calculated attention scores, while
DeCo adds an extra average pooling layer to downsample the
original visual tokens and learns a new projector to adapt the
downsampled visual tokens to the LLM.

b) Implementation Details: In training, we set the hyper-
parameters K and β to 2 and 0.02, respectively, and τ% ∈
{6.7%, 11.1%, 16.7%}. The data we used to fine-tune both Di-
ViCo and the corresponding LLM are consistent with LLaVA-
v1.5 [11]. We train the models for 1 epoch on 4 Nvidia A100
80G GPUs. The inference phase follows the evaluation settings
established by LLaVA-v1.5 [11], Qwen-VL [10] and Video-
LLaVA [61], respectively. All the experiments are carried out
on a single A100 80G GPU.

B. Main Results

In the main experiment, we equip the backbone models
LLaVA-v1.5-7b1, LLaVA-v1.5-13b2 and Qwen-VL3 with the
proposed DiViCo module and baseline models (FastV and
DeCo). We test the performances of these models at different
compression rates, and the results are shown in Table I, where
we additionally calculate the relative improvement of DiViCo
over the best baseline.

From the results, we can observe that at different compres-
sion rates, i.e., 83.3%, 88.9% and 93.3%, the performance of
DiViCo is consistently better than FastV and DeCo on various
datasets. And generally, the larger the compression rate, the
more superiorly that DiViCo competes against other baselines.
Specifically, at compression rate of 93.3%, DiViCo achieves

1https://huggingface.co/liuhaotian/llava-v1.5-7b
2https://huggingface.co/liuhaotian/llava-v1.5-13b
3https://huggingface.co/Qwen/Qwen-VL-Chat
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TABLE I
PERFORMANCE COMPARISON BETWEEN MULTIPLE BACKBONES EQUIPPED WITH DIVICO AND BASELINE METHODS.

Backbone Compression Rate Method TextVQA(↑) Pope(↑) MMBench(↑) MME(↑)

LLaVA-7b

- Baseline 58.21% 73.73% 85.88% 1862.91

1 − τ% = 83.4%
Token 576→96

FastV 55.16% 71.3% 56.7% 1689.61
DeCo 45.10% 70.69% 62.39% 1384.86

DiViCo 55.25% 72.1% 63.46% 1769.73

Improvement 0.16%↑ 1.12%↑ 1.72%↑ 4.74%↑

1 − τ% = 88.9%
Token 576→64

FastV 55.30% 70.39% 59.63% 1564.05
Deco 52.36% 64.77% 58.9% 1574.7

DiViCo 55.64% 71.03% 71.4% 1651.0

Improvement 0.64%↑ 0.91%↑ 19.74%↑ 4.85%↑

1 − τ% = 93.3%
Token 576→38

FastV 51.65% 67.1% 48.8% 1368.95
DeCo 52.18% 54.92% 46.29% 1381.70

DiViCo 53.64% 68.7% 49.18% 1438.83

Improvement 2.80%↑ 2.38%↑ 0.78%↑ 5.10%↑

Overall Impro. 1.20%↑ 1.47%↑ 7.41%↑ 4.90%↑

LLaVA-13b

- Baseline 61.0% 76.5% 72.1% 1827.25

1 − τ% = 83.3%
Token 576→96

FastV 58.19% 74.02% 62.0% 1747.35
Deco 56.44% 71.3% 60.7% 1702.2

DiViCo 58.54% 73.9% 62.3% 1755.70

Improvement 0.60%↑ -0.16%↓ 0.48%↑ 0.48%↑

1 − τ% = 88.9%
Token 576→64

FastV 56.09% 72.90% 54.7% 1668.36
Deco 54.64% 70.69% 60.23% 1587.5

DiViCo 57.32% 73.3% 61.14% 1696.16

Improvement 2.19%↑ 0.55%↑ 1.51%↑ 1.67%↑

1 − τ% = 93.3%
Token 576→38

FastV 52.43% 68.8% 52.19% 1543.25
DeCo 46.94% 58.96% 56.19% 1404.95

DiViCo 56.26% 71.7% 57.47% 1626.70

Improvement 7.30%↑ 4.22%↑ 2.28%↑ 5.41%↑

Overall Impro. 3.36%↑ 1.54%↑ 1.42%↑ 2.52%↑

Qwen-VL

TextVQA(↑) Vizwiz(↑) GQA(↑) VQAV2(↑)

- Baseline 61.33% 35.24% 58.0% 78.54%

1 − τ% = 83.3%
Token 256→42

FastV 51.21% 31.28% 51.88% 53.74%
DeCo 48.60% 30.94% 50.35% 53.19%

DiViCo 52.02% 32.20% 53.15% 56.47%

Improvement 1.58%↑ 2.94%↑ 2.45%↑ 5.08%↑

1 − τ% = 88.9%
Token 256→28

FastV 50.02% 30.03% 47.33% 44.3%
DeCo 47.88% 30.78% 47.32% 44.01%

DiViCo 51.86% 31.45% 50.23% 47.7%

Improvement 3.68%↑ 2.18%↑ 6.13%↑ 7.67%↑

1 − τ% = 93.3%
Token 256→17

FastV 43.11% 24.12% 37.77% 36.00%
DeCo 42.73% 26.80% 35.32% 37.03%

DiViCo 44.01% 28.43% 38.62% 40.46%

Improvement 2.09%↑ 6.08%↑ 2.25%↑ 9.26%↑

Overall Impro. 2.45%↑ 3.73%↑ 3.61%↑ 7.34%↑
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Fig. 4. Performance comparisons between DiViCo and FastV on Video-LLaVA with different compression rates and benchmarks.
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Fig. 5. Visualization of the distribution for the predicted next token embedding using t-SNE. We select the first 500 samples from dataset TextVQA for ease
of demonstration.

over 7.3% gain of accuracy on TextVQA with LLaVA-13b,
6.08% gain of F1 metric on Pope with Qwen-VL, and 5.10%
gain of scores on MME with LLaVA-7b. These demonstrate
the strong comprehension capabilities of our proposed Di-
ViCo, as well as its generalizability. The performance boost
may be attributed to the strategy proposed in DiViCo that
we sufficiently utilize the less significant visual tokens, and
adopt a disentangled compression approach to minimize the
information loss.

C. Performance on the Video Domain
Our proposed DiViCo module can be easily implemented

in LVLMs for video domain via treating videos as multiple
frames. Therefore, we verify the effectiveness of DiViCo on
three video understanding benchmarks. Specifically, we choose
Video-LLaVA [61]4 as our backbone model, and compare
the performance of DiViCo with FastV under different com-
pression rates. Note that due to the spendy and irreducible
identities of ChatGPT [3], we use LLaVA-v1.5-13b to assist
the evaluation. The results are illustrated in Figure 4, where
we mark the baseline that does not conduct any compression
as a horizontal (red) line, indicating the upper bound of the
performance. We can clearly observe that DiViCo outperforms
FastV across all the datasets and compression rates, demon-
strating its superiority under various compression scenarios for
both images and videos.

D. Visualization
We conduct several visualization experiments to verify the

effectiveness of our proposed method in terms of Robustness,
Disentanglement and Attention Score.

4https://huggingface.co/LanguageBind/Video-LLaVA-7B

a) Robustness: DiViCo compresses the less significant
visual tokens in a disentangled manner, thus it benefits in
stronger generalizability towards unseen data. Additionally,
DiViCo tends to be more robust when some random noises
disturb the input data, since we model a distribution rather
than a single point. To validate this, we select the first 500
samples in TextVQA, and equip LLaVA-v1.5-7b with DiViCo
and FastV. At the compression rate of 88.9%, we add the
same Gaussian noise to the input image data, and observe the
changes of the distributions for the next predicted token after
the disturbance. We use t-SNE [62] to reduce the dimension
of the probability distribution and visualize it in Figure 5.
From the results, we can observe that i) the distribution of the
next token predicted by DiViCo stays almost unchanged after
the disturbance, while ii) the distribution of the next token
predicted by FastV changes drastically in contrast. Moreover,
we quantitatively compare the performance of DiViCo against
FastV under the same noise setting, whose results are demon-
strated in Table II. The drop in performance for DiViCo after
the noise disturbance is significantly less than the drop for
FastV across all datasets. Specifically, the average performance
drop for DiViCo is 2.315%, in comparison to the 5.19%
drop (more than twice) for FastV, which further validates the
robustness and generalizability of DiViCo.

b) Disentanglement: Additionally, we measure the dis-
entanglement within the dimensions of vc based on the inde-
pendence level IL defined as follows,

IL = 1− 2

d(d− 1)

∑
1≤i,j≤d

|corri,j |, (16)

where corri,j is the correlation between the ith and jth

dimension of vc. Figure 7 shows the degree of disentanglement
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TABLE II
PERFORMANCE COMPARISONS OF LLAVA-V1.5-13B EQUIPPED WITH DIVICO AND FASTV WHEN ADDING RANDOM GAUSSIAN NOISE. SPECIFICALLY,

WE ADD THE SAME NOISE SAMPLED FROM A STANDARD GAUSSIAN DISTRIBUTION TO THE ENCODED IMAGES.

Method TextVQA Pope MMBench MME

FastV 56.09% 72.90% 54.7% 1668.36
FastV+noise 55.67%(↓ 0.75%) 70.7%(↓ 3.02%) 50.5%(↓ 7.68%) 1512.9(↓ 9.32%)

DiViCo 57.32% 73.3% 61.14% 1696.16
DiViCo+noise 57.10%(↓ 0.38%) 72.58%(↓ 0.98%) 58.7%(↓ 3.99%) 1629.80%(↓ 3.91%)

Does it say happy birthday? What animal is shown on the table?

Is this Denny's? What city is mentioned on the post card? 

Fig. 6. Visualization of the selected significant visual tokens in the proposed DiViCo module. We show four examples from TextVQA dataset, where the
original and compressed images with token attention are displayed from left to right, respectively.
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Fig. 7. Degree of disentanglement within compressed visual tokens of
LLaVA-v1.5-7b and LLaVA-v1.5-13b equipped with DiViCo during different
training steps.

within different training steps for LLaVA-v1.5-7b and LLaVA-
v1.5-13b equipped with DiViCo. We observe that DiViCo is
able to gradually reach a large degree of disentanglement
during the training process, which may take credits from the
KL divergence loss, i.e., minimizing the distance between the
target distribution and the n-dimensional independent standard
Gaussian distribution in the latent space. We argue that a large
degree of disentanglement will result in high informativeness,
which is particularly beneficial for LVLM compression.

c) Attention Score: We choose several examples from
TextVQA, and visualize the selected visual tokens from Di-

ViCo in Figure 6, with the original image and question on
the left and bottom of each group, respectively. We follow the
experimental settings in Section IV-A, and set τ% to 11.1%.
Despite the large compression rate, we observe that DiViCo
successfully retains most of the essential visual information
that will help the LVLM to correctly answer the question. Take
the picture on the right side of the first row as an instance,
DiViCo captures the most significant information, i.e., Koala
on the changing table, which is exactly the correct answer
to the question. Therefore, in this scenario, neglecting other
visual tokens will do no harm to the model performance.
However, it is impossible to capture all the vital information
in most situations. Take the picture on the left side of the
first row as an example, only part of the texts (birth) on
the display are captured. Therefore, it is necessary to utilize
those less important tokens so that no useful information is
discarded. Moreover, we would also like to point out that our
proposed disentangled encoding approach aims to compress
the information gap between the selected τ% significant visual
tokens and the original visual signal, boosting both accuracy
and efficiency of LVLMs.

E. Ablation Studies
We conduct several ablation studies to verify the effective-

ness of each component in the proposed DiViCo module as
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Fig. 8. Ablation study. Figure (a) and Figure (b) demonstrate the performance comparisons between DiViCo and its two variants. For w/o. Disentangled
Compression, we remove the part for disentangled compression, only fine-tuning the LLM, and while for w/o. Disentangled Encoding, we remove the KL
divergence and estimate a scalar point instead of the prior Gaussian distribution. All metrics are reported as ratios relative to the full DiViCo module. Figure
(c) performs the sensitivity analysis on the hyper-parameter K, where K is chosen from {2, 7, 19}.

well as the reasonableness of the hyper-parameter selection.
a) Components of DiViCo: We train two variants of

DiViCo, each excluding some components from the full Di-
ViCo module. We quantitatively compare the performances
of the two variants against DiViCo on the four datasets,
i.e., TextVQA, Pope, MMBench and MME. The detailed
descriptions of the two variants are as follows,

1) Variant-a, denoted as w/o. Disentangled Compression: In
variant-a, we do not perform disentangled compression
but conducting adaptive visual token selection alone, i.e.,
we discard those less significant visual tokens. Then we
directly feed these selected visual tokens into LLM, and
fine-tune LLM itself.

2) Variant-b, denoted as w/o. Disentangled Encoding: In
variant-b, we change gθ(.) from our proposed disentan-
gled encoder to a vanilla encoder, directly processing
the compressed visual tokens (estimate a point instead
of a distribution) without the KL divergence loss. Then
we fine-tune both the encoder and the LLM.

We use LLaVA-v1.5-7b and LLaVA-v1.5-13b as the back-
bone architecture respectively, and set τ% to 11.1%. The
results are demonstrated in Figure 8(a) and Figure 8(b). We
can observe that compared to the full DiViCo module (the grey
bar), both variants (the red bar and the blue bar) consistently
perform worse on all the datasets with both the backbones.
On the one hand, the accuracy of variant-a drops drastically
without Disentangle Compression. On the other hand, adding
the KL divergence loss indeed improve the accuracy by a
noticeable margin. This ablation study validates our claims
that it is necessary to make full use of the less significant
tokens, and that the utilization of a disentangled encoder with
KL divergence loss is beneficial.

b) Hyper-parameter K: We discuss the choice of the
hyper-parameter K, which determines the layer within LLM
decoder that we insert our DiViCo module. Specifically, we
select K from {2, 7, 19}, and conduct experiments for back-
bone architecture LLaVA-v1.5-13b with the compression rate

of 88.9% on all the four datasets, whose results are illustrated
in Figure 8(c).

We observe that when K > 2, different Ks result in
similar performances on the four datasets. Specifically, the
three quadrilaterals that represent K = 2, 7 and 19 are
nearly inseparable in Figure 8(c). The reason may be that
in layer 2 of the decoder, the distribution of the average
attention a visual token can contribute has shifted from a
scattered distribution to a more centralized one, as is shown in
Figure 1. As such, the rest of the tokens in layer 2 with small
average attention scores carry a relatively small proportion of
all noteworthy information hidden in the original visual signal.
Therefore, filtering them out and compressing them in layer
2 are enough for the model to reach a certain compression
rate while minimizing the information loss. For larger K, we
empirically show that compressing the visual tokens at this
layer will not significantly improve the accuracy. However,
according to Equation 11, larger K will reduce the efficiency
gain brought by the proposed DiViCo module. On the other
hand, for K ≤ 2, the model still processes the whole visual
tokens, failing to correctly determine the significance of each
visual token. As a result, filtering and compressing at this
stage will result in large performance drops. Therefore, we
choose K = 2 to maintain a reasonable trade-off, where we
can achieve super efficiency gain (since K = 2 is still far
smaller than the total number of layers for a typical LLM
decoder) while maintaining relatively high accuracy.

F. Efficiency Analysis

We quantitatively analyze the efficiency gain brought by our
proposed DiViCo module and compare it with two baseline
methods, FastV and DeCo. We choose LLaVA-v1.5-7b as the
backbone architecture, and conduct the efficiency experiment
over TextVQA dataset. The results in terms of Accuracy(↑),
FLOPs(↓), GPU Memory(↓) and Cuda Time(↓) are illustrated
in Table III. The relative improvement of each method over the
original LLaVA-v1.5-7b is demonstrated in the corresponding
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TABLE III
EFFICIENCY ANALYSIS FOR LLAVA-V1.5-7B EQUIPPED WITH DIVICO AND BASELINE METHODS ON TEXTVQA. WE EVALUATE THE EFFICIENCY OF AN

LVLM IN TERMS OF FOUR METRICS, I.E., Accuracy(↑), FLOPs(↓), GPU Memory(↓) AND Cuda Time(↓). ADDITIONALLY, WE PROVIDE THE RELATIVE
IMPROVEMENT IN ROW ∆ Ratio.

Model - Accuracy(↑) FLOPs(T)(↓) GPU Memory(GB)(↓) Cuda Time(ms)(↓)

LLaVA-v1.5-7b - 58.21% 4.995 15.66 325

LLaVA-v1.5-7b+FastV
1-τ%=83.3% 55.16% 2.171 13.11 283

∆ Ratio 5.23% ↓ 56.5% ↓ 16.2% ↓ 12.9% ↓

LLaVA-v1.5-7b+DeCo
1-τ%=83.3% 54.10% 1.823 11.90 275

∆ Ratio 7.06% ↓ 63.5% ↓ 24.0% ↓ 15.4% ↓

LLaVA-v1.5-7b+DiViCo
1-τ%=88.9% 55.64% 1.612 10.95 157

∆ Ratio 4.42% ↓ 67.7% ↓ 30.1% ↓ 51.7% ↓

Overall Improvement - 0.81% ↑ 4.2% ↓ 6.1% ↓ 36.3% ↓

row ∆ Ratio, and the overall improvement of DiViCo over the
best performing baseline is shown in the bottom row.

We can observe from Table III that DiViCo achieves a
better accuracy score at a larger compression rate compared
to baseline methods, and meanwhile DiViCo costs the least
FLOPs, GPU memory and Cuda time. Specifically, DiViCo is
able to maintain 95.6% of the accuracy of the original model
at the compression rate of 88.9%, surpassing 94.8% and 93.0%
of the uncompressed accuracy obtained by FastV and DeCo at
an even smaller compression rate of 83.3%. Furthermore, the
overall improvement of DiViCo over the best baseline DeCo
regarding Cuda Time is 36.3%. We argue that the improvement
may take credits from the fact that DiViCo can effectively
utilize all the rest visual tokens which receive small attention
scores. Thus, we are able to include more information into the
compressed visual tokens. Additionally, we note that LLaVA-
v1.5-7b equipped with DiViCo significantly reduces 67.7% of
the original FLOPs, 30.1% of the original GPU memory and
51.7% of the original Cuda time while maintaining 95.6% of
the original accuracy. Similar results hold on other backbones.

V. DISCUSSIONS

Although DiViCo is designed to fully capture the infor-
mation from the less significant visual tokens, it may not be
as effective at small compression rates compared to itself at
large compression rates. This is mainly due to the reason
that at small compression rates, the number of discarded
visual tokens is so small that they can hardly carry any
useful information. Therefore, compressing these tokens may
seldomly be beneficial for the LVLMs. In this case, the
compression operation itself brings additional computational
overhead and the compressed information may interfere the
decision of LVLMs since it may deviate the model from the
main noteworthy objects. The solution is to stop compressing
those less significant tokens because the selected τ% signifi-
cant tokens alone are enough for the inference of the LVLM
at small compression rates such as 10% to 20%. However,

we also note that small compression rates can hardly help the
improvement of efficiency, while our proposed DiViCo module
can keep fairly high accuracy at very large compression rates.

VI. LIMITATION

One possible limitation for DiViCo, and also for most of
the tuning-based compression methods, is that we may need
to retrain our model, including the variational encoder and
LoRA version of LLM, at every given compression rate.
A feasible solution may be that we copy the disentangled
variational encoder three times for different purposes, i.e., i)
large compression rates, ii) medium compression rates and
iii) small compression rates. Then a Mixture-of-Experts [63]
mechanism will be adopted to mix the outputs of the three
variational encoders for the LLM. Ideally, no matter what
compression rate is chosen, the corresponding variational
encoder will lead a major role. Since this work mainly focuses
on the compression strategies for visual tokens, we leave it for
investigation in future work.

VII. CONCLUSION

Current large vision-language models usually employ large
quantities of visual tokens, most of which contribute little
to the final performances, while significantly increasing the
computational overhead. Existing works mainly remove the
less important visual tokens, or insert trainable layers to
directly compress the visual tokens, resulting in lost of much
useful information, and deteriorating the ability of general-
ization. In this paper, we propose a novel DiViCo module,
which first selects the most significant visual tokens based
on its average attention scores, and then compresses the
information hidden in remaining tokens with a disentangled
and variational paradigm. DiViCo is able to largely reduce the
number of visual tokens while maintaining the performances
of the LVLMs at a fairly high level. We conduct extensive
experiments including ablation studies and visualizations for
many backbones on various real-world datasets against several
state-of-the-art baselines to verify the effectiveness of DiViCo.
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